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NOMENCLATURE 

thermal conductivity; 
cylinder length; 
Prandtl number; 
rate of heat transfer from surface; 
Reynolds number (raR)ro/i,; 
radial coordinate; 
radius of cylinder; 
temperature: 
pure conduction solution; 
boundary temperatures; 
velocity components; 
axial coordinate. 

Greek symbols 

0. angular coordinate; 
1). kinematic viscosity; 

P$ density; 

*. stream function; 

Q, angular velocity. 

I~TR~Dti~lO~ 

THE PROBLEM of rotationally induced laminar natural con- 
vection in a cylindrical container rotating about its own 
axis has evoked a number of analytical contributions, for 
example, [l-5]. These publications were motivated by 
applications such as turbine heat transfer, atmospheric re- 
entry, and rotating tubes and thermosyphons. In all of the 
aforementioned studies, analytical solutions were obtained 
by introducing appropriate simplifications into the math- 
ematical model. 

The present investigation was undertaken with the objec- 
tive of treating the problem with a minimum of simplifying 
assumptions by solving numerically the full NavierrStokes 
and energy equations. Although the project had to be 
terminated before the parametric objectives were fully 
realized, a number of interesting results were obtained and 
will be reported here. 

A schematic diagram of the system to be analyzed is shown 
at the left of Fig. 1. All walls of the cylinder rotate with 
an angufar velocity fl. The temperatures of disks 1 and 2 
are ?‘t and TZ, respectively, and are uniform over the 
r&pective surfaces. The temperature of the cylindrical wall 
varies linearly between 7’i and TZ. Inasmuch as gravity 
effects will not be considered, the orientation of the cylinder 
is irrelevant as far as the analysis is concerned. For con- 
creteness, Ti > TZ. 

In the absence of natural convection, the fluid within the 
cylinder would experience a pure rigid body rotation and 
heat conduction would be the sole mechanism of thermal 
transport. In the presence of natural convection, all three 
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velocity components t’,. ug, and u, are called into play, and 
heat conduction is supplemented by convective transport. 

ANALYSIS AND RESULTS 

The starting point of the analysis was the five partial 
differential equations expressing conservation of mass: 
momentum, and energy in cylindrical coordinates (r, 0, z). 
To enable a natural convection motion, the Boussinesq 
model was introduced so that the density variation was 
accounted for in certain strategic terms, but otherwise all 
fluid properties were taken to be constant. In the present 
problem, the terms with variable density were pui/r and 
PU~V&, which respectively appear among the inertia terms 
in the radial and tangential momentum equations. 

The density-temperature relation used in evaluating the 
aforementioned terms was p/p* = T*/T, where p* and T* 
correspond to a reference state. This p, T relation is appro- 
priate for a perfect gas under conditions where pressure 
variations are negligible, as was true for the parameter 
ranges of the analysis. In addition, in view of the small value 
of the Eckert number (cc 1). the viscous dissipation and the 
compression work could properly be omitted from the 
energy equation. 

With the specifications discussed in the foregoing para- 
graphs and with the assumption of axial symmetry (p/Z = 0), 
the governing partial differential equations were employed 
without further approximations. numerical solutions were 
obtained by a finite-difference method that was an adap- 
tation of that of [6], and full details of the method are 
presented therein. 

As a prelude to the numerical solutions, it was necessary 
to specify the values of the following parameters: (a) the 
temperature ratio Ti/T& (b) the aspect ratio L/ro. (c) the 
rotational Reynolds number Re = (r&)r&, id) the Prandtl 
number Pr, and (e) the reference state for 7’*. Although a 
wider range of parameter values was originally envisioned, 
the following cases were actually completed at the ter- 
mination of the project: (a) TJT, = 1.05; (b) Re = 20, 200, 
1000 and 1500; (c) L/r, = 0.5; id) Pu = 0.7. and (e) 
T: = (Tl + T,)i2. 

It is interesting to examine the range of Grashof numbers 
encompassed by the results. If the body force per unit mass 
is taken as the value of vi/r at r = r0 and r0 is selected as 
the characteristic dimension, then 

Thus, the Grashof number range extended from about 
20 to 105. 

A presentation of representative results will now be made. 
In Fig. 1, streamlines are plotted in the T,Z plane for 
Re = 200 and 1500. These streamlines show the Row patterns 
for the radial and axis! velocities u, and uz (that is, 
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FIG. 1. Enclosure schematic (left diagram) and streamline patterns (center and 
right diagrams). 
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FIG. 2. Distributions of tangential velocity. Re = 1500. 

IT’, = - ?$/?z and IV; = i.$/?r). The numerical values in- 
dicated on the curves are for $/riQ. The figure shows that 
natural convection gives rise to a cellular circulation pattern 
characterized by a radial outflow along the cooler disk 2 
and a radial inflow along the hotter disk 1. In general, the 
radial velocities are primarily confined to the regions 
adjacent to the surfaces of the disk. 

There are some marked differences in detail between the 
results for Rr = 200 and those for Rr = 1500. With in- 
creasing Reynolds number. the domains of radial and axial 
Row appear to have become sharply defined, with the former 
confined to very narrow layers near the disk surfaces and 
the latter holding sway over most of the gap between the 
disks. At lower Reynolds numbers, the domains are not 
quite as sharply delineated. 

The effect of natural convection on the tangential velocity 

is illustrated in Fig. 2. The figure gives results for Rr = 1500. 
The ordinate is the ratio of the local tangential velocity cg 
to the local rigid body velocity IQ that would exist in the 
absence of natural convection. The abscissa is the dimension- 
less axial position variable z/rO, and the curves are 
parameterized by the radial position variable. Inspection of 
the figure shows that significant deviations from rigid body 
rotation are confined to the region adjacent to the axis of 
the enclosure. For most of the span of the radial coordinate, 
the deviations are small and. in addition, are nearly indepen- 
dent of radial position. 

Next, attention will be turned to the temperature dis- 
tribution and surface heat transfer results. In the absence 
of natural convection. the temperature distribution is linear 
and is given by 

T”(Z) = r, +(z/L)(T,- r,) 
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FIG. 3. Temperature deviations from pure conduction, Re = 1500. 

where the subscript 0 denotes pure conduction. The local 
deviations from pure conduction may be expressed in 
dimensionless form by 

T(r, z) - T,(z) 

7’1 - Tz 

and representative distributions of this quantity are plotted 
in Fig. 3 for Re = 1500. with z/r,, as abscissa and r/r0 as 
curve parameter. 

Study of these distributions reveals how the presence of 
the cellular flow patterns (Fig. 1) modifies the temperature 
field. From Fig. 1, it is seen that fluid flowing adjacent to 
the hotter disk subsequently penetrates into the core of the 
enclosure. Consequently, the temperatures in the core should 
exceed those for pure conduction, as is witnessed by the 
uppermost three curves in Fig. 3. It is further seen from 
Fig. 1 that fluid flowing along the colder disk is subsequently 
confined to a narrow region adjacent to the cylindrical wall. 
Correspondingly, T should be less than To for a narrow 
range of radii near r = ro. The lowermost curves of Fig. 3 
corroborate this expectation. 

The ordinate values of Fig. 3 are very much less than 
unity. This suggests that the actual temperature profiles, 
T vs z for parametric values of r, deviate very little from 
straight lines. Such profiles were plotted and carefully 
examined for the possible presence of thermal boundary 
layers on the disks, but none were in evidence. 

Overall heat-transfer results for the two disks and the 
cylindrical wall are plotted in Fig. 4 as a function of the 
rotational Reynolds number. For the hotter disk 1 and the 
cylindrical wall, heat flows from the wall to the fluid, 
whereas for the cooler disk 2, the heat flow direction is 
from the fluid to the wall. The results indicate that the effect 
of natural convection is to increase the heat absorbed by 
the cooler disk while decreasing the heat loss from the 
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FIG. 4. Overall heat-transfer results. 
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hotter disk. These trends are consistent with the presence 
of the cellular flow as indicated in Fig. 1 and with the 
temperature deviations of Fig. 3. The heat loss from the 
cylindrical wall also increases as the natural convection 
circulation grows stronger. 
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